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Asymptotic behavior of radially symmetric self-focused beams

F. Vidal and T. W. Johnston
Institut National de la Recherche Scientifique-E´nergie et Mate´riaux, 1650 Boulevard Lionel-Boulet, Case Postale 1020, Varennes,

Québec, Canada J3X 1S2
~Received 5 August 1996!

Radially symmetric self-focused beams near solitonlike solutions are studied in the framework of the non-
linear Schro¨dinger equation for physically relevant nonlinearities. From the numerical solutions, three main
types of oscillations are identified, which are characterized by one or more well-defined frequencies and by the
presence or lack of the damping associated with radiation emission. Concepts borrowed from linear quantum
mechanics are shown to provide many valuable insights into the observed behavior.@S1063-651X~97!00303-6#

PACS number~s!: 03.40.Kf, 42.65.Jx, 52.35.Mw, 03.65.Ge
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I. INTRODUCTION

When the envelopeu(r ,t) of the electric field

E~r ,t !5
1

2
ê u~r ,t !exp@ i ~v0t2k0z!#1c.c.

varies slowly in timet and along the propagation axisz and
when the polarization of the electric field can be neglec
@1#, one obtains the parabolic approximation to the Maxw
wave equation, which, in a frame of reference moving at
velocity c2k0 /v0, is

2iv0

]

]t
u1c2¹'

2u1v0
2de~r ,t !u50. ~1!

Herede(r ,t) is the local variation of the medium’s dielectr
function and¹'

2 is the transverse Laplacian. For med
wherede(r ,t) depends on the local intensity of light, on
obtains the nonlinear Schro¨dinger equation~NLSE! which is
in its normalized form

i
]

]t
u1¹'

2u1 f ~ uuu2!u50. ~2!

The scaled variables appearing in Eq.~2! are related to the
physical ones in a manner that depends on the specific p
rameters determining the nonlinear functionde(r ,t). Equa-
tion ~1! or ~2! constitutes a widely used starting point for th
modeling of the propagation of light beams in nonlinear m
dia ~see, for instance,@1–10#!. It is therefore important to
know and understand the general features of the solution
Eq. ~2! for physically relevant nonlinearitiesf (uuu2), a topic
that is the main concern of this paper.

A well-known property of Eq.~2! is self-focusing: when
f (uuu2).0 the nonlinearity acts locally as a focusing le
that can overcome diffraction. The beam can self-focus a
whole ~whole beam self-focusing! or, when the beam powe
exceeds several times some critical value, the critical pow
form several independent beamlets~filamentation! @11#.
When self-focusing and diffraction equilibrate, Eq.~2! ad-
mits steady-state solutions@12#, i.e., solitons.

In one spatial dimension, Eq.~2! with the simple Kerr
nonlinearity f (s)5s, which yields the so-called cubic non
551063-651X/97/55~3!/3571~10!/$10.00
d
ll
e

ra-

-

of

a

r,

linear Schro¨dinger equation~CNLSE!, describes the propa
gation of light pulses in optic fibers@13# @the variablest and
x are however interchanged in Eq.~2! in that case#. For this
specific problem, Eq.~2! can be solved exactly by means
inverse scattering transforms@14#. It is known that for an
arbitrary initial state the asymptotic or final state@i.e., in the
notation of Eq.~2!, for t→`# is composed of a set of equ
librium states~solitons! and a certain amount of radiation
which means light that is not confined in the solitons a
thus escapes to infinity. However, in two dimensions
solutions of the CNLSE are such that the self-focusing so
tions will collapse, becoming singular at one or more poi
in a finite time @11,15#, so that no equilibrium stable stat
exists. If the parabolic approximation in two dimensions
mains valid~i.e., if large-angle diffraction@16# or large-angle
frequency spreading@17# do not supervene! the nonlinearity
must saturate, i.e.,f (s),C, whereC is some positive num-
ber, in order to avoid this unphysical effect. The Kerr no
linearity then appears as only the first term of the expans
of a saturable nonlinearity model as a function of the fie
amplitude. For usual saturable nonlinearities, Eq.~2! has no
known analytical solutions~both in one and two dimensions!
and one must mainly rely on numerical investigations.

In this paper we will consider specifically the algebr
ically saturable nonlinearity

f A~s!5
s

11s
, ~3!

which has recently been used to describe successfully
propagation of light in gas vapors@6–8# and can be justified
from simple physical arguments.@Notice that the alternative
form as/(b1cs) on the right-hand side of Eq.~3!, where
a, b, and c are arbitrary nonzero constants, would add
more generality since it is always possible to normalize
field u, distances, and time in Eq.~2! so thatf A appears as in
Eq. ~3!.# We have checked that the following discussion
mains essentially the same for other~saturable! nonlinearities
of physical interest, such asf (s)512exp(2s), which de-
scribes the slow ponderomotive self-focusing of laser bea
in plasmas@1,3–5# and f (s)512(11s2)21/2, which de-
3571 © 1997 The American Physical Society
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3572 55F. VIDAL AND T. W. JOHNSTON
scribes self-focusing due to the relativistic increase of
electron mass@9,10# ~independently of the electron displac
ment due to the ponderomotive force!. Therefore, the nonlin-
earity ~3! can be considered as typical of other physica
relevant saturating nonlinearities.

Many important general results concerning the existen
uniqueness, and stability of the steady-state solutions of
~2! for some saturable nonlinearities and for an arbitr
number of spatial transverse dimensions have been obta
@12#. However fewer general results are available for
time-dependent problem. For the CNLSE, analytical so
tions have been constructed in one dimension, and for
approach to collapse in two dimensions@18#. For saturable
nonlinearities useful results have also been obtained conc
ing the stability of the radially nonlinear excited states@19#
and the growth rates of the filamentation process@10,20#.

Recently, we have shown@21#, from numerical investiga-
tions, that for large times the emerging beamlets in the fi
mentation process are allvery closeto different equilibrium
states that can contain several times the critical power~up to
20 times has been observed!. An upper bound on the tota
amount of power not confined in the final beamlets~radia-
tion! has also been obtained. However, some questions
mained unanswered about the fate of the beamlets so form
Do they exactly reach equilibrium asymptotically, and if s
in what manner? It has long been known that for an a
trarily chosen initial state the beam generally evolves in
very complicated way that is far from self-similar, eve
when radial @two-dimensional# symmetry is imposed~in
which case only whole beam self-focusing of some fract
of the initial power is possible! @22#; however, the behavio
of the self-focused beam near equilibrium is much simp
This problem has been investigated analytically in Re
@23,24# for the simplest saturable nonlinearityf (s)
5s2a2s2 with a soft saturation, i.e.,a2!1, and for beams
close to the critical power. It was concluded that in this p
ticular context the beam behavior is, at least qualitative
very similar to that of the well-known 1D CNLSE, i.e., th
beam undergoes single-frequency small damped oscillat
while emitting radiation and finally reaches an equilibriu
state. In this paper we will show, from the numerical so
tions of Eq.~2! in the radial case, that the asymptotic beha
ior of self-focused beams for the chosen physically relev
nonlinearity~3! presents a richer and more complex varie
of behavior than that reported previously and that much
this observed behavior can be understood by means of
cepts borrowed from elementary quantum mechanics.

In the next section we recall some general properties
the equilibrium solutions of the NLSE, Eq.~2!. In Sec. III we
present our numerical results about the behavior of the s
tions near equilibrium. Section IV presents a discuss
about the results of Sec. III from a quantum-mechani
point of view. Finally a summary and some concluding
marks are given in Sec. V.

II. EQUILIBRIUM SOLUTIONS

Equation ~2! has equilibrium solutions of the form
ul(r ,t)[fl(r )exp(ilt), wherefl(r ) satisfies the equation

1

r

]

]r S r ]

]r
flD1 f ~fl

2!fl2lfl50. ~4!
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We will be interested only in the purely radial monotonica
decreasing solution~ground state! of Eq. ~4! for a givenl,
which we will denotefl(r ) with no special label. We
choose the normalization so thatfl(r ) is real. Equilibrium
solutions of Eq.~4! can be represented in theN vs H plane
@23#, or H-N diagram,N andH being two well-known inte-
grals of motion of Eq.~2!, namely@12#,

N@u#5~2p!21E uuu2dx dy, ~5!

H@u#5~2p!21E @ u¹'uu22F~ uuu2!#dx dy, ~6!

where

F~s!5E
0

s

f ~n!dn. ~7!

Note thatN ~the notation is that dating from early solito
work! is proportional to the power of the light beam@25#,
which is conserved in absence of absorption, whileH, which
is the Hamiltonian associated with Eq.~4!, seems to have no
other simple physical significance. For the special case
nonlinearity we are considering, Eq.~3!, one can see tha
equilibrium solutions exist only for 0,l,1 since
0< f A<1. For this nonlinearity, ground-state solutions
Eq. ~4! ~i.e., radially monotonically decreasing functions! in
two dimensions have been shown to be unique and st
@26#. The set of points (Hl ,Nl), whereHl[H@ul# and
Nl[N@ul#, defines a locus in theN vsH plane@23# which
is shown in Fig. 1 for the nonlinearity~3! in two dimensions.
One can see that equilibrium solutions occur only~i! for N
>Nc , whereNc '1.8623@as is always the case in two d
mensions whenf (s)→s as s→0#, and ~ii ! for H<0. One
can show easily that Eq.~4! can be derived by minimizing
the functionalH1lN @23#. This has the important conse
quence that the representative point (H,N) of some function

FIG. 1. Equilibrium locus in the planeN vs H. Small circles
correspond to the values ofl from 0 to 0.6 by steps of 0.1.Nc is the
critical value forN below which no equilibrium solution exists. Th
intersection point of the two dashed lines (H̄,N̄) corresponds to
some initial state of the beam.
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55 3573ASYMPTOTIC BEHAVIOR OF RADIALLY SYMMETRIC . . .
u(r ,t), in general different from any equilibrium solutio
ul(r ,t), must lie above the equilibrium locus in theH-N
diagram.

Equation~4! can be solved numerically using a shooti
method. This consists of a search for the appropriate co
cient Cl as defined by the asymptotic behavior~i.e., for
r>r 0, wherer 0 is so large that the nonlinear term is neg
gible! of the solutions of Eq.~4! for a givenl,

fl~r !'Clexp~2l1/2r !Y ~l1/2r !1/2 for r>r 0 ,

~8!

which, after a numerical integration of Eq.~4! from r5r 0 to
r50, yields

dfl~r !/drur5050. ~9!

For a givenl, because of the nonlinearity forr,r 0, only
discrete values ofCl can fulfill the boundary condition~9!
and the smallestCl defines the ground-state solution~at
least, from our experience, in the cases we have conside!.
Figure 2 shows some features of the ground-state solution
the 2D case for the nonlinearity~3! as a function ofl,
namely, the maximum amplitudefl(0) and the root-mean
square~rms! radiusrl . It is seen that asl→0, fl(0) van-
ishes butrl goes to infinity, while asl→1, bothfl(0) and
rl go to infinity, a result familiar from previous approx
mated calculations@1,25,27#. As a result, the powerN re-
mains finite forl→0, i.e.,N5Nc , while N→` for l→1.

III. OSCILLATIONS NEAR EQUILIBRIUM

We will be interested in the behavior of the radial so
tionsu(r ,t) of Eq. ~2! when the initial conditionu(r ,0) dif-
fers somewhat from some equilibrium solutionfl(r ) of Eq.
~4! as

u~r ,0!5~12«!fl„~12«!r …, ~10!

FIG. 2. Root-mean-square radiusrl and maximum amplitude
fl(0) of the equilibrium ground-state solutions of Eq.~4! as a
function ofl.
fi-

d
in

-

where the deviation parameter« is such that 0,« ,1. This
definition allows us to control the deviations from the eq
lirium solutions by means of the parameter« and also en-
sures thatN5Nl for all times ~sinceN is an integral of
motion!. Returning to Fig. 1 again, the representative po
of u(r ,0) in theH-N diagram is then displaced horizontal
to the right with respect to the representative point
fl(r ) on the equilibrium locus. Therefore, one begins fu
ther away fromanyequilibrium solution as« increases. We
have checked that the following results would remain ess
tially unchanged if a less simple choice for the initial cond
tion would have been made@for example, a Gaussian func
tion with the same powerN and the same maximum
amplitudeor the same mean radius asfl(r )#.

For rather large deviation of the initial state from equili
rium, i.e.,«'1, the beam generally undergoes complica
oscillations@22# and a significant fraction ofN escapes from
the central beam~i.e., radiation! @21#. A nice example, where
«50.9 andl50.53, is illustrated in Fig. 3, which shows th
level contours of the normalized included power@4#,

n~r ,t !5Nl
21E

0

r

uu~r ,t !u2r dr ,

which is such that 0<n(r ,t),1. It is seen that in the time
interval 0,t,250, the beam oscillates in a rather viole
and complicated way and that about 70% of the initial pow
Nl is radiated away, leaving only about 30% unradiated.
t.250 the self-focused beam reaches a gently oscilla
state that is not far from the equilibrium solution charact
ized by l'0.31 ~a value smaller than the initial one!. It
should be noticed that, in general, the rate of radiation em
sion is much smaller than in the example of Fig. 3 f
t,250 and, due to the natural limitations of the numeric
calculations, it is hard to observe an asymptotic state so c
to equilibrium as the one seen in Fig. 3 fort.250. However,
since in these cases radiation seems to be continually em
as a function of time, it is plausible that an asymptoticnearly
equilibrium state, similar to the one of Fig. 3 fort.250, is
always reached~as long asN.Nc andH,0).

There is a close relationship between the radiation em
sion and the beam’s evolution towards equilibrium, as d
cussed in Ref.@23#, which treatment we will recapitulate fo
convenience with some further elaboration. Consid
n(r ,t) and h(r ,t), which are defined in a way similar to

FIG. 3. Normalized included power contours in the radius
time plane for an initial state rather far from equilibrium. In th
example«50.9 andl50.53.



ol

,
rs

n

ti
t

es
t
i-
-
-
ti

t

ui-

ib

rg
or

ic
-
st
b

he

ar

e

r t
-
d
tio
n

s
be

ree
-

m-
rp
ies
r

illa-

3574 55F. VIDAL AND T. W. JOHNSTON
N andH @Eqs.~5! and~6!# respectively, but with the differ-
ence that the integration is not performed over the wh
transverse plane but over a finite transverse surfaceS of
radius r instead. WhileN and H are time independent
n(r ,t) and h(r ,t) in general are not because of transfe
through the boundary ofS. Assume that we chooseS large
enough so that practicallyn(r ,t)5N̄ and h(r ,t)5H̄ at
t50, H̄ andN̄ corresponding to a particular initial conditio
ū(r ,0). Because of the radiation emission fromS and be-
cause the nonlinearity is negligible outsideS, the contribu-
tions to N̄ and H̄ outsideS @i.e., N̄2n(r ,t) and H̄2h(r ,t)#
are positive and increase in time. Thus the representa
point „n(r ,t),h(r ,t)… in theH-N diagram starts at the poin
(H̄,N̄) and evolves inside the~curved! triangle formed by
the equilibrium locus and the two perpendicular lin
N5N̄ andH5H̄ ~see Fig. 1!. As the representative poin
approaches the equilibrium locus@necessarily near an equ
librium state characterized by al smaller from the one ap
pearing in Eq.~10!# the oscillation amplitude is then ex
pected to decrease, to become more regular, with radia
emitted at a decreasing rate, as illustrated in Fig. 3.~An
interesting consequence is that the upper bound on
amount of radiation emitted is given byN̄2NF , whereNF is
the value ofN corresponding to the intersection of the eq
librium locus and the vertical lineH5H̄.! Therefore, the
radiation emission can be seen as the means used by
nonlinear system to reach a state closer to equilirium.

Let us now consider initial states very close to equil
rium, i.e., «!1, which, as discussed above, corresponds
investigating the beam’s behavior for large times~or to the
beamlet’s behavior in the filamentation process for la
times @21#!. A systematic investigation of the time behavi
of the solutions of Eq.~2!, as a function ofl, reveals that
there are three main types of behavior or oscillations, wh
we will denoteA, B, andC and which occur in rather well
defined ranges ofl. These appear after a transient that la
for only a few oscillation periods and can be characterized
the oscillations of the field amplitudeuu(0,t)u. ~In fact, the
choice of any radiusr , other thanr50, located in a region
where the nonlinearity is non-negligible, i.e., forr,r b ,
where r b'2rl , would lead to the same conclusions; t
choicer50 is only a matter of convenience.! Figure 4 shows
the quantity I 08(t)5 dI0(t)/dt, where I 0(t)5uu(0,t)/
fl(0)u2 for the three types of oscillations.@The time deriva-
tive of I 0(t) was taken in order to remove the constant p
of the intensity and thus simplify the analysis.# Type-A be-
havior occurs for 0,l,0.47~approximately! and is charac-
terized by a damped oscillation having a rather well-defin
single ~real! frequency since the zeros ofI 08(t) are regularly
spaced and thus correspond to a well-defined period afte
short transient. Type-B behavior is the simplest one: It hap
pens approximately for 0.47,l,0.84 and is characterize
by an undamped, or at most very weakly damped, oscilla
having a well-defined single frequency, as can be see
Fig. 5~a! which showsu Ĩ 08(v)u, where Ĩ 08(v) is the discrete
Fourier transform ofI 08(t). Finally, type-C behavior is seen
for l values greater than for type-B behavior~i.e., approxi-
mately for 0.84,l,1) and corresponds, like type-B behav-
ior, to an undamped~or at most very weakly damped! oscil-
e
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lation, but now with two or more well-defined frequencie
that generally do not seem to be in simple ratios, as can
seen in Fig. 6, which shows the power spectrum for th
different values ofl for l.0.84. Asl increases, new small
frequency spikes appear at critical valuesln near frequencies
v5ln and then move towards smallerv while increasing in
amplitude asl is further increased.

These observations hold only for small perturbation a
plitudes («!1). As « increases gradually, secondary sha
spikes corresponding to multiples of the primary frequenc
~i.e., those that are seen when« !1) appear in the powe

FIG. 4. Examples of the three observed main types of osc
tions ~typesA, B, andC) near equilibrium.

FIG. 5. Fourier spectrum ofI 08(t) ~see the text for the definition!
for initial beams near the equilibrium solutionl50.7, for the initial
displacements«50.001~a!, 0.3 ~b!, and 0.6~c!.
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55 3575ASYMPTOTIC BEHAVIOR OF RADIALLY SYMMETRIC . . .
spectrum. For type-A and -B behavior, the secondary spike
correspond to multiples of the primary frequency. For so
critical value of«, which depends onl, the power spectrum
becomes filled with a background noise. This is illustrated
Fig. 5 for l50.7 ~corresponding to a type-B behavior! for
various«. As can be seen in this figure, for«50.001 a single
spike is present in the power spectrum at the freque
v5V'0.48@Fig. 5~a!#. When«50.3, secondary spikes ca
be seen at the frequency 2V and 3V @Fig. 5~b!# ~other spikes
at 4V , 5V, . . . are also present, but are much weake!.
When«50.6, the main spike can still be distinguished, bu
continuum of new structures appear at high frequencie
the power spectrum@Fig. 5~c!#. For type-C behavior, as«
increases gradually, secondary spikes corresponding to
tiples of the basic frequencies appear in the power spect
as for type-A and -B behavior, but, in addition, spikes lo
cated at the beat frequency combinationsuv i6v j u, where
i , j ( iÞ j )51,2, . . . , also appear~among others more diffi-
cult to identify!. As for typesA andB, the power spectrum
becomes filled with a background noise when« is further
increased.

For the simplest type,B, numerical investigations revea
that the beam amplitude evolves nearly as
N-conserving, self-similar form

uu~r ,t !u'~11g~ t !!fl„@11g~ t !#r …, ~11!

whereg(t) is a periodic function. To first order ing(t), Eq.
~11! is

uu~r ,t !u'fl~r !1s1~r !g~ t ! for ug~ t !u!1, ~12!

FIG. 6. Fourier spectrum ofI 08(t) ~see the text for the definition!
for initial beams near the equilibrium solutions characterized
l50.85 ~a!, 0.93 ~b!, and 0.96~c!, for the initial displacement
«50.001. The values ofl correspond approximately to the appea
ance of a new frequency spike on the right of the spectrum.
e
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where the functions1(r )5fl(r )1]fl(r )/]r is easily
shown to be orthogonal tofl(r ) and to have a single node a
some distancer . Owing to the fact, mentioned above, th
the observed frequencies arer independent~as long as
r,r b), Eq. ~12! generalizes as follows, when several we
defined frequencies are present for a givenl ~as for type-C
oscillations!:

uu~r ,t !u'fl~r !1 (
n51

sn~r !gn~ t ! for ugn~ t !u!1,

~13!

where the sum is over all frequencies. When damping of
oscillations occurs~i.e., for typeA oscillations for any value
of « and for all types when« is not very small! thegn(t) in
Eq. ~13! are then slowly decreasing functions of time. Noti
that the radiation component, associated with the dampin
the oscillations, is not included in Eq.~13!, which is then
expected to hold only in the region where the nonlinearity
non-negligible, i.e., forr,r b .

The oscillation frequency values as a function ofl, for
«!1, are shown in Fig. 7. Small circles correspond to t
frequencies obtained from the direct numerical solutions
Eq. ~2!. Note that forl.0.84 there is more than one fre
quency for a given value ofl ~type-C behavior!. The lowest
oscillation frequencyv, which is unique forl,0.84, forms
a smooth curve forl.0.84, which becomes the smallest
the multiple frequencies. We will refer to this frequency
V(l). It can be seen that forl,0.47 ~type-A behavior!,
V'l, and that forl'0.6,V has a maximum and goes t
0 asl approaches 1.

The quasi-self-similar behavior of the small radial osc
lations ~at least for typeB) reported above@see Eq.~11!#

y

FIG. 7. Frequencies as a function ofl. Small circles correspond
to observed frequencies~for l.0.84 several frequencies coexist fo
the same value ofl). The set of smallest observed frequencies
labeled V. Dashed curves correspond to the frequenc
vn05En2E0 for n51–4. The curve labeledVV is obtained from a
variational calculation.



a

r-

e
.

,

n

t

po

y
ov
d
o
la
es

ar
an
ct

e

os-

be

m-
te

is

c-
-

,

ilib-
eral

ies
t

of

t-
nly

3576 55F. VIDAL AND T. W. JOHNSTON
naturally suggested using this property to do approxim
calculations@25,27,28#. Anderson and Bonnedal@27# per-
formed a variational calculation for the nonlinearity of inte
est here@Eq. ~3!#, starting from the simple trial function

u~r ,t !'A~ t !exp@2r 2/2R~ t !21 ib~ t !r 2#. ~14!

Of course, A(t) and R(t) are not independent sinc
A(t)2R(t)252N, andN @see Eq.~5!# is time independent
The approximate equilibrium solution can be written as

fl~r !'Alexp~2r 2/2Rl
2!, ~15!

where the equilibrium radiusRl is related to the equilibrium
amplitudeAl as @27#

Rl5Al„2dilog~11Al
2!2 ln~11Al

2!1Al
2
…

21/2, ~16!

in which dilog(x) [*1
xln(t)(t21)21dt is the usual diloga-

rithm function @29#. For small oscillations near equilibrium
the oscillation frequency is@27#

VV52A 2

RlAl
S 22 dilog~11Al

2!23ln~11Al
2!

1
Al
2

11Al
2D 1/2. ~17!

From Eq. ~4! one can expressl in terms of Al and
Rl(Al), using Eq.~15!,

l5Rl
221Al

22ln~11Al
2!21, ~18!

and thus plotVV(Al) againstl(Al) as in Fig. 7. It is worth
noticing that for the same trial function, Eq.~14!, we found
that the virial method@12# also yields Eqs.~15!–~17!, al-
though an assumption about the phase in the trial functio
not required for this method.

From Fig. 7 it is clear thatVV(l) constitutes an excellen
approximation ofV(l) for l.0.65 ~for which VV is less
thanl), while the agreement is poorer for lowerl values.
The poor agreement forl,0.65 is not really surprising in
view of the fact that the trial function~14! is not able to take
into account the oscillation damping or the radiation com
nent that characterizes type-A behavior. This is a warning
thatVV is unlikely to exist with a real part only, as originall
assumed. While the ‘‘overtone frequencies,’’i.e., those ab
V, appearing forl.0.84, can, in principle, also be obtaine
from the appropriate trial functions by means of the virial
the variational method, we will not perform these calcu
tions here since, as we will see in the next section, th
frequencies can be interpreted in a very simple way from
quantum-mechanical point of view.

IV. ANALYSIS

A. General discussion

In this section we will show that the oscillations ne
equilibrium examined in the preceding section share m
features with some well-known quantum-mechanical effe
In particular the multiple frequencies observed in type-C os-
cillations for«!1 will be shown to correspond to Rabi-lik
te
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oscillations between energy levels@30#, while the radiation
emission, which is responsible from the damping of the
cillations observed, for instance, in type-A oscillations, ap-
pears to be an effect analogous to photoionization@31#.

Let us first rewrite Eq.~2! in a form familiar in quantum
mechanics

i
]u

]t
2~H01dV!u50, ~19!

whereH052¹'
21V0 is the unperturbed Hamiltonian, with

V0~r !52 f „uul~r ,t !u2…, ~20!

as the unperturbed potential, which will be assumed to
known @after solving Eq.~4! for the equilibrium solution
ul(r ,t)#, and a perturbing potential

dV~r ,t !52 f „uu~r ,t !u2…2V0~r !. ~21!

For the given unperturbed potentialV0, stationary solutions
of Eq. ~19!, i.e., when dV50, are of the formu(r ,t)
}uE(r ,t)[jE(r )exp(2iEt), wherejE(r ) are the normalized
eigenfunctions satisfying thelinear Schrödinger equation

~H02E!jE50. ~22!

HereE is equivalent to energy in quantum mechanics. Co
paring Eqs.~22! and ~4!, one can see that the ground-sta
energy level of the eigenvalue equation~22! is
E5E0[2l and that the corresponding eigenfunction
jE0(r )5Nl

21/2fl(r ), so that uE(r ,t)5Nl
21/2ul(r ,t). Of

course, Eq.~22! may have other discrete states~excited
states! corresponding to the energiesE1<E2<E3<•••,0
and has certainly a continuum of states~i.e., unbound states!
for E>0. SinceH is an Hermitian operator, the eigenfun
tions jE of Eq. ~22! can be defined so that they form a com
plete basis oforthonormalfunctions on which, in particular
the solutions of Eq.~19! can be expanded.

For the perturbing potentialdV(r ,t), we have to first or-
der in uuu2fl ,

dV'2 ~ uuu2fl!
d f~q2!

dq U
q5fl

. ~23!

From the observations about small oscillations near equ
rium reported in Sec. III, one obtains an approximate gen
form for dV(r ,t): substituting Eq.~13! in Eq. ~23! yields

dV~r ,t !'(
n

dṼn~r !exp~2hnt !cos~vnt1an!

for r,r b , ~24!

where the sum is performed over all frequenc
vn present for a givenl. HeredṼn(r ) are time-independen
functions,an are constant phases, andhn are small positive
constants that we introduce to approximate the damping
the oscillations due to radiation loss. The conditionr,r b has
been added in Eq.~24! because the latter may not hold ou
side this range, where radiation may take place. In fact, o
the ranger,r b will be useful in the following discussion.
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55 3577ASYMPTOTIC BEHAVIOR OF RADIALLY SYMMETRIC . . .
1. Rabi oscillations

We now consider type-C oscillations, i.e., multiple un-
damped frequencies. Viewing Eq.~19! from a quantum-
mechanical point of view leads one naturally to suspect
there is some relationship between the frequencies obse
in type-C oscillations and the transition frequenci
vnm5En2Em , where theEi are the eigenvalues of Eq.~22!.
These expectations prove to be fulfilled, as can be see
Fig. 7, where the frequenciesvn0 for n51–4 are shown as
dashed lines.@The first four excited energy levelsE1–E4
were calculated numerically by solving Eq.~22! for various
unperturbed potentials characterized by the param
l52E0#. While the overtone frequencies observed in typ
C oscillations are seen to be close tov20, v30, andv40, the
agreement betweenV ~orVV) andv10 is not nearly so good
In this connection, it is worth noticing that, in linear two
level systems in which the perturbation is stationary, the
tual transition frequency approaches the difference betw
the two energy levels, sayEn andEm , when this value is
large with respect to the matrix elements^jEnudVujEm&[
*jEn* dV jEmdx dy @30#. This feature appears in Fig. 7, sinc
the agreement between the observed frequencies andvn0
seems to improve asn increases. This analogy with a linea
stationary two-level system leads us to the following tw
provisional conclusions. The first is that the excited sta
(n>1) are relatively strongly coupled with the staten50
and only weakly between themselves since the related
quenciesvnm , wheren.m>1, are not seen in the powe
spectrum. The second conclusion is that the dominant t
in the perturbing potentialdV, Eq. ~24!, has a frequency
significantly smaller thanvn0 for n>2 since it seems to ac
as a nearly constant~or zero-frequency! perturbation. It is
thus plausible that the term in the perturbing potentialdV
corresponding to the frequencyV is indeed responsible from
the excitation of the Rabi-like oscillations between the e
ergy levels of the perturbed system.

2. Radiation emission

Let us now investigate the possible transitions to the c
tinuum that the perturbing potential Eq.~24! may cause. The
basic idea is in the association of the radiation emiss
inferred in Sec. III, for instance, for type-A oscillations, with
the well-known photoionization effect in quantum mecha
ics, in which the probability to find a bound electron in i
initial stationary state irreversibly decreases in time when
frequency of an external perturbation~for instance, an elec
tromagnetic field! is such thatv>22pEb /h, whereEb is
the binding energy of the electron andh is the Planck con-
stant, a condition that ensures that the induced state of
electron is in the continuum. One deals with such a prob
by means of the standard time-dependent perturbation th
in which one calculates a transition probabili
dPE5Nl

21z^uEuu& z2dE from the initial well-defined initial
stateul to the state of the continuumuE (E>0) between
the energyE andE1dE @31#.

In our case, we have thatu(r ,t)→ul(r ,t) as t→`, i.e.,
the beam tends to equilibrium asymptotically~escaping ra-
diation can be neglected ast→`, as a first approximation!.
This statement is not really in contradiction with the obs
vations about type-B and -C oscillations made in Sec. II
at
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since nothing is said about the characteristic time of conv
gence to equilibrium. Given the perturbation of the form E
~24!, one can repeat the standard derivation of the transi
probability ratedwE found in textbooks, with the importan
difference that here the perturbation is ‘‘switched on’’ in th
far future ~instead oft50), since the equilibrium state ap
pears fort→`, and one then has to calculate the transiti
probability for finite values oft. One finds the familiar ‘‘one-
photon transition’’ probability rate

dwE'
p

2Nl
(
n

z^uEudṼnuul& z2
hn /p

~E1l2vn!
21hn

2 dE.

~25!

Notice that thedṼn , and thereforedV, need only be known
for r,r b (r b'2rl) since the integrand of thenth integral
vanishes outside this range because oful . Whenhn goes to
zero, the nth ratio in the summation is replaced b
d(E1l2vn), whered(x) is the Dirac delta function. As in
quantum mechanics, Eq.~25! indicates that irreversible
losses to the continuum states (E>0), i.e., radiation, occur
onlywhenvn>l for at least onevn ~assuming thehn small!
since only in this case the transition probability to the co
tinuum is appreciable.

Now, referring to Fig. 7, one can see that forl.0.47
~typesB andC) one hasvn,l for all n ~except possibly at
unimportant isolated points in the case of type-C oscilla-
tions! and therefore, according to Eq.~25!, no radiation
should be produced, in agreement with the observati
made in Sec. III. Forl,0.47 ~type-A oscillations!, the
unique oscillation frequency observed is such thatv'l,
which indicates, according to Eq.~25!, that transitions to the
continuum states close toE50 do occur. Once again thi
conclusion is in agreement with the observations reporte
Sec. III, where the emission of radiation in the case of ty
A oscillations was inferred from the damping of the oscil
tions. A link is thus established between the value of
oscillation frequency and the emission~or not! of radiation.
The perhaps intriguing fact that the transitions to the c
tinuum states, for type-A oscillations, are apparently so clos
to E50 will be clarified at the end of this section by consi
ering, as a particular case analogous to the present dis
sion, the 1D CNLSE, for which analytical solutions a
known, which presents the same features as the type-A os-
cillations described in Sec. III.

We now consider the cases where the initial states are
so close to equilibrium. When« increases gradually, we no
ticed that secondary frequencies and eventually backgro
noise appear in the power spectrum@Fig. 5#. While, for ex-
ample, for type-B oscillations, the frequencyV is too small
to ensure a transition to states in the continuum, the seco
ary frequencies 2V, 3V, . . . , or thefrequencies forming the
background noise, as« is further increased, are greater tha
l, i.e., large enough to allow such transitions. According
Eq. ~25!, one expects, therefore, radiation to be produc
and consequently oscillations to be damped, until« de-
creases sufficiently as the beam gets close to equilibri
i.e., so that the secondary frequencies come to play a ne
gible role. Thus, for type-B and -C oscillations the damping
of the oscillations should eventually stop, while the damp
continues for type-A oscillations since in this case the radi
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3578 55F. VIDAL AND T. W. JOHNSTON
tion emission is not due to the secondary frequencies bu
the primary one,V. This description of the evolution of th
self-focused beam starting not so close from equilibriu
made on the basis of Eq.~25!, is in agreement with the nu
merical solutions, where a damping of the oscillations is
ways observed initially when« is not very small~see Fig. 3,
for instance!. Of course, in principle, the secondary freque
cies exist even when« is arbitrarily small, although their
corresponding amplitude in the power spectrum is v
small. Consequently, type-B and -C behavior should lead
asymptotically,but over a much longer time scale, to an
equilibrium state as for type-A oscillations. Besides this, th
analog of ‘‘multiphoton transitions,’’ which correspond t
higher-order terms in Eq.~25!, may also contribute to the
transitions to the continuum. In sum, the main differen
between type-A oscillations, on the one hand, and typesB
and C, on the other hand, is that for typeA the primary
frequencyV ensures the transitions to the continuum, wh
for typesB andC they are enabled only by the seconda
frequencies, whose influence decreases rapidly as« de-
creases, and probably by multiphoton-transition-like p
cesses, both of which are effects of higher order.

B. One-dimensional cubic nonlinearity

Let us now compare the above general analysis with a
lytical solutions for the 1D CNLSE case, which includes t
complete behavior. The equilibrium ground-state solutions
Eq. ~4! are

ul~x,t !5A2l sech~Alx!exp~ ilt !. ~26!

Settingu5ul1du and using the fact thatul(x,t) satisfies
Eq. ~22!, particular solutions of Eq.~19! linearized about
these equilibrium solutions have been obtained by Gor
@33# and are, in our notation,

du~x,t !522
]2g

]x2
14Altanh~Alx!

]g

]x
22lgtanh2~Alx!

12lg* sech2~Alx!exp~2ilt !, ~27!

whereg(x,t) is any solution of the free Schro¨dinger equation

i
]g

]t
1

]2g

]x2
50. ~28!

One can see that for large timesdu(x,t) is not localized
within the range of the equilibrium solutions~26! ~i.e.,
uxu,xb'2l21/2) becauseg(x,t) is spread out~diffracted! as
time increases. This ensures thatu(x,t)→ ul(x,t) ~for
uxu,xb) as t→`, as required. Also, it is easy to see that,
first order ing ~or its derivatives!, i.e., for small oscillations,
uu(x,t)u oscillates with the frequencyv5l about
uul(x,t)u, with an amplitude variation proportional tog ~or
its derivatives!, which necessarily decreases in time sin
g(x,t) does within the range of the equilibrium solutio
Therefore, the small oscillations of the 1D CNLSE pres
the same features as the type-A damped oscillations observe
in Sec. III @i.e., in the 2D case with the saturable nonlinear
~3!# with the difference that here it occurs for all possib
values ofl, which now ranges from 0 tò since the non-
to
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linearity f (s)5s does not saturate.„It is interesting to note
that Anderson’s variational model@28# for the 1D CNSLE,
which does not take into account the radiative field, yie
the oscillation frequencyv5lp/3, which is somewhat
greater than the correct frequencyl, in the same way as the
variational estimateVV @Eq. ~17!# was greater than the ob
served frequencyV for type-A oscillations.…

The unperturbed potential 2 f (uulu2)52uulu2

522l sech2(Alx) is such that its depth increases asl, but
its width decreases asl21/2. For 1D square well potentials
the product depth3width2 determines the number of boun
states@32#. The fact that this quantity is nearly constant he
explains why the type-C behavior~multiple oscillation fre-
quencies! is not observed for the 1D CNLSE: The unpe
turbed potentials have no excited states. As shown in Fig
the depth and width of the 2D unpertured potential cor
sponding to the saturable nonlinearity~3! both increase as
l increases, which allows excited states. Numerical inve
gations show that this is not due to the number of transve
dimensions but rather to the form of the nonlinearity. As
matter of fact, in one dimension the saturable nonlinea
~3! presents the same three types of behavior as in two
mensions. Only small quantitative differences distinguish
two cases: For instance, in the 1D case, type-A behavior
happens for 0,l,0.47, typeC for 0.89,l,1, and type
B in between.

According to Eq.~25!, radiation should be emitted in th
case considered here since the unique oscillation frequen
such thatv5l, which implies transitions to the continuum
states of energies aroundE50 after the transient. One ca
see that the radiation field given by Eq.~27! is fully consis-
tent with this finding. As a matter of fact, solutions of E
~28! can be written as

g~x,t !5E
2`

1`

g̃~k!exp@ i ~kx2k2t/2!#dk. ~29!

Herek is related toE, appearing in Eq.~22!, ask25E. Now,
assume that the initial stateu(x,0) is real and even.@The
assumption thatu(x,0) is even is similar to the radial sym
metry assumption in two dimensions.# Consequently, from
Eq. ~27!, g(x,0) is also real and even and thusg̃(k) is real.
Outside the equilibrium solution, Eq.~27! is

du'22
]2g

]x2
14Al

x

uxu
]g

]x
22lg, for uxu.r b .

~30!

Substituting Eq.~29! in Eq. ~30! and using the fact that the
leading contributions of the integrand occur when its phas
stationary, i.e., whenk'x/t, one concludes that the Fourie
modes aroundk50, or E50, are indeed the dominan
modes ing(x,t), and therefore indu(x,t), whent is large, as
asserted above.

V. SUMMARY AND CONCLUSIONS

We have investigated the behavior of radially symmet
solutions of the 2D NLSE for the generic saturable nonl
earity ~3!, near the equilibrium solutionsul(r ,t), which are
characterized by a single parameterl ranging between 0 and
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55 3579ASYMPTOTIC BEHAVIOR OF RADIALLY SYMMETRIC . . .
1 in our case. When the initial beam is rather far from a
equilibrium solution and when the integral of motion a
such thatN>Nc andH,0, the beam initially approache
some equilibrium solution in a manner characterized by
regular oscillations accompanied by a significant amoun
radiation emission. As the beam gets closer to equilibriu
its behavior simplifies considerably and this asympto
phase of its evolution constituted the main subject of
investigations. Contrarily to the well-known 1D CNLSE
where only damped single-frequency oscillations~type A)
are observed, one can see, in addition, in the case we stu
single ~type-B) and multiple~type-C) frequencies of practi-
cally undamped oscillations. We also observed that when
oscillations are not so close to equilibrium, secondary f
quencies appear in the Fourier spectrum, which are multi
of the primary ones and also simple combinations of the
For oscillations rather far from equilibrium the seconda
frequencies combine and proliferate to form a noisy sp
trum.

We considered our problem from a quantum-mechan
formulation. Very general features of the perturbati
~mostly the characteristic frequencies! were taken from the
numerical solutions. We found that the observed multi
frequencies of the oscillations~type C) corresponded ap
proximately to the transition frequencies from ground to e
cited statesvn0 of the unperturbed potential, the agreeme
improving asvn0 increases, in a way that is familiar i
simple two-level systems in quantum mechanics. Our an
sis has also revealed a link between the oscillation frequ
cies and the emission of radiation: when at least one
quency vn characterizing the perturbation is such th
vn>l (2l being equal to the energy of the fundamen
bound state! the latter is then able to induce a transition fro
the fundamental state~equilibrium, bound solution! to the
continuum~unbound states of positive energy, i.e., radiatio!
in a way similar to the well-known photoionization effec
Such a frequency can be found for type-A oscillations, but
not for type-B and -C oscillations, a fact that is consisten
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with our observations of the numerical solutions. The exac
solvable 1D CNSLE~for which only type-A oscillations are
observed! has been found to be in agreement with this ge
eral analysis. The main difference between linear quan
mechanics and the nonlinear system considered here is
here the perturbation is not imposed from outside: The s
tem generates it by its own means.

For powers large with respect to critical (N/Nc @1), the
beam is likely to break up into several beamlets if the init
beam is not perfectly symmetric radially and rather far fro
the equilibrium locus in theH-N diagram~see Fig. 1!. We
have shown elsewhere that when filamentation occurs,
beamlets approach asymptotically equilibrium solutio
ranging typically fromN/Nc51 to 20 @21#. For the nonlin-
earity considered in that work, this range includes only typ
A and -B oscillations, since type-C oscillations only occur
for N/Nc .75 or l.0.87 @while for the nonlinearity~3!
type-C oscillations occur forN/Nc .172#. Therefore, type-
C oscillations would seem to be unlikely to be observed
practical situations. If two independent degrees of oscillat
freeedom were allowed, rather than the single radial one
posed in the present study, one would likely observe a ric
and more complex variety of behavior near equilibrium th
that reported in the present paper, such as transverse q
rupole oscillations, for instance. It is plausible, however,
asserted in Ref.@24#, that the anisotropic modes would dam
out and that the purely radial oscillations would come
dominate. In that case the results of the present study wo
hold asymptotically in this more general context. This inte
esting topic is beyond the scope of the present work and
constitute the subject of a future investigation.
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tique ~Hermann, Paris, 1977!, p. 412.

@31# C. Cohen-Tannoudji, B. Diu, and F. Laloe¨, Mécanique Quan-
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