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Asymptotic behavior of radially symmetric self-focused beams
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Radially symmetric self-focused beams near solitonlike solutions are studied in the framework of the non-
linear Schrdinger equation for physically relevant nonlinearities. From the numerical solutions, three main
types of oscillations are identified, which are characterized by one or more well-defined frequencies and by the
presence or lack of the damping associated with radiation emission. Concepts borrowed from linear quantum
mechanics are shown to provide many valuable insights into the observed befaiii§3-651X%97)00303-9
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I. INTRODUCTION linear Schrdinger equationCNLSE), describes the propa-

gation of light pulses in optic fibefd 3] [the variables and

When the envelopa(r,t) of the electric field x are however interchanged in E@) in that casé For this
1 specific problem, Eq(2) can be solved exactly by means of

E(r.t)= =& u(r.t)exdi(wgt—kqz)]+c.C. inverse scattering transfornjd4]. It is known that for an

(Tt 2 (r.yexi (wot—ko2)] arbitrary initial state the asymptotic or final state., in the

) o ) ) notation of Eq.(2), for t—«] is composed of a set of equi-
varies slowly in timet and along the propagation axdsand  |ipriym states(solitons and a certain amount of radiation,
when the polarization of the electric field can be neglecteq,ich means light that is not confined in the solitons and
[1], one obtains the parabolic approximation to the Maxwe”thus escapes to infinity. However, in two dimensions the

W:}\éi.teqcuz?(“?n' W.Z'Ch’ in a frame of reference moving at the"solutions of the CNLSE are such that the self-focusing solu-
v Iy ¢Ko/ o, 1 tions will collapse, becoming singular at one or more points

P in a finite time[11,15, so that no equilibrium stable state
2iw05u+c2Vfu+wgae(r,t)u=0. (1)  exists. If the parabolic approximation in two dimensions re-

mains valid(i.e., if large-angle diffractiof16] or large-angle

Here de(r,t) is the local variation of the medium’s dielectric freauency spreadinl7] do not supervenethe nonlinearity

function andV2 is the transverse Laplacian. For media MUSt saturate, i.ef(s)<C, whereC is some positive num-
where Se(r,t) depends on the local intensity of light, one ber, in order to avoid this unphysical effect. The Kerr non-

obtains the nonlinear Schdimger equatiofNLSE) which is linearity then appears as only the first term O.f the expan.sion
in its normalized form of a saturable nonlinearity model as a function of the field

amplitude. For usual saturable nonlinearities, &).has no
9 known analytical solutiongboth in one and two dimensions
iﬁu+Vfu+f(|u|2)u=O. 2 and one must mainly rely on numerical investigations.
In this paper we will consider specifically the algebra-

The scaled variables appearing in EB) are related to the ically saturable nonlinearity

physical ones in a manner that depends on the specific para-
rameters determining the nonlinear functiéa(r,t). Equa-
tion (1) or (2) constitutes a widely used starting point for the fa(S)= ——
modeling of the propagation of light beams in nonlinear me- 1+s’
dia (see, for instancg,1-10]). It is therefore important to
know and understand the general features of the solutions of
Eq. (2) for physically relevant nonlinearitie|u|?), a topic ~ which has recently been used to describe successfully the
that is the main concern of this paper. propagation of light in gas vapof6—8| and can be justified

A well-known property of Eq(2) is self-focusing: when from simple physical argumentiNotice that the alternative
f(Jul?>)>0 the nonlinearity acts locally as a focusing lensform as/(b+cs) on the right-hand side of Eq3), where
that can overcome diffraction. The beam can self-focus as &, b, andc are arbitrary nonzero constants, would add no
whole (whole beam self-focusingr, when the beam power more generality since it is always possible to normalize the
exceeds several times some critical value, the critical poweffjeld u, distances, and time in ER) so thatf , appears as in
form several independent beamletBlamentation [11]. Eq. (3).] We have checked that the following discussion re-
When self-focusing and diffraction equilibrate, EQ) ad-  mains essentially the same for otfisaturablgnonlinearities
mits steady-state solutiof42], i.e., solitons. of physical interest, such a{s)=1—exp(—s), which de-

In one spatial dimension, Eq2) with the simple Kerr scribes the slow ponderomotive self-focusing of laser beams
nonlinearity f(s)=s, which yields the so-called cubic non- in plasmas[1,3-5 and f(s)=1—(1+s%) %2, which de-

()
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scribes self-focusing due to the relativistic increase of the L
electron mas§9,10] (independently of the electron displace-
ment due to the ponderomotive fojc&herefore, the nonlin- 0.6 o 1
earity (3) can be considered as typical of other physically (HN)
relevant saturating nonlinearities.

Many important general results concerning the existence,
uniqueness, and stability of the steady-state solutions of Eq. >
(2) for some saturable nonlinearities and for an arbitrary I A=0.5
number of spatial transverse dimensions have been obtained
[12]. However fewer general results are available for the ol
time-dependent problem. For the CNLSE, analytical solu- -
tions have been constructed in one dimension, and for the 0.3 ]
approach to collapse in two dimensiofis3]. For saturable N, —
nonlinearities useful results have also been obtained concern- e T M-S —
ing the stability of the radially nonlinear excited stafé$]
and the growth rates of the filamentation prociis 2Q. H

Recently, we have showi21], from numerical investiga-
tions, that for large times the emerging beamlets in the fila- FIG. 1. Equilibrium locus in the plandl vs H. Small circles
mentation process are alery closeto different equilibrium ~ correspond to the values bffrom 0 to 0.6 by steps of 0.N, is the
states that can contain several times the critical pawerto critical value forN below which no equilibrium solution exists. The
20 times has been obseryedn upper bound on the total interse.ctign point of the two dashed lined,N) corresponds to
amount of power not confined in the final beamlétsdia- ~ SOMe initial state of the beam.
tion) has also been obtained. However, some questions re- i ) ) i )
mained unanswered about the fate of the beamlets so formet/® Will be interested only in the purely radial monotonically
Do they exactly reach equilibrium asymptotically, and if so, décréasing solutiofground stateof Eq. (4) for a givenA,
in what manner? It has long been known that for an arbiWhich we will denote ¢, (r) with no special label. We

trarily chosen initial state the beam generally evolves in &£h00se the normalization so tha{(r) is real. Equilibrium
very complicated way that is far from self-similar, even Solutions of Eq(4) can be represented in tievs H plane
when radial [two-dimensiondl symmetry is imposedin  [23], or H-N diagram,N andH being two well-known inte-
which case only whole beam self-focusing of some fractior@rals of motion of Eq(2), namely[12],

of the initial power is possib)g 22]; however, the behavior

of _the self-focused beam near gquilibrium is _much _simpler. N[u]:(zﬂ_)—lf u2dx dy, (5)
This problem has been investigated analytically in Refs.

[23,24] for the simplest saturable nonlinearity(s)

=s—a?s? with a soft saturation, i.ea?<1, and for beams

close to the critical power. It was concluded that in this par-
ticular context the beam behavior is, at least qualitatively,

very similar to that of the well-known 1D CNLSE, i.e., the where
beam undergoes single-frequency small damped oscillations
while emitting radiation and finally reaches an equilibrium s

state. In this paper we will show, from the numerical solu- ®(s)= L f(v)dv. @)
tions of Eq.(2) in the radial case, that the asymptotic behav-

ior of self-focused beams for the chosen physically relevant Note thatN (the notation is that dating from early soliton
nonlinearity (3) presents a richer and more complex varietyyor) is proportional to the power of the light bea@5],
of behavior than that reported previously and that much ofyhich is conserved in absence of absorption, whilavhich
this observed behavior can be understood by means of CoRs the Hamiltonian associated with Ed), seems to have no
cepts borrowed from elementary quantum mechanics.  gther simple physical significance. For the special case of
In the next section we recall some general properties Oﬁonlinearity we are considering, E¢3), one can see that
the equilibrium solutions of the NLSE, E(R). In Sec. Il we equilibrium solutions exist only for @\<1 since
present our numerical results about the behavior of the sollbnggl_ For this nonlinearity, ground-state solutions of
tions near equilibrium. Section IV presents a dISCUSSfIOFEq. (4) (i.e., radially monotonically decreasing functioris
about the results of Sec. Il from a quantum-mechanical,, dimensions have been shown to be unique and stable
point of view. Flnally a summary and some concluding re-[26]. The set of points K, ,N,), where H,=H[u,] and
marks are given in Sec. V. N,=N[u, ], defines a locus in th& vs H plane[23] which
is shown in Fig. 1 for the nonlinearityg) in two dimensions.
One can see that equilibrium solutions occur ofi)yfor N
Equation (2) has equilibrium solutions of the form =N¢, whereN. ~1.8623[as is always the case in two di-
u, (r,t)= ¢, (r)exp(it), where, (r) satisfies the equation mensions wherf(s)—s ass—0], and (i) for H<0. One
can show easily that Eq4) can be derived by minimizing
19 i the functionalH+ XN [23]. This has the important conse-
rar\ or 4 guence that the representative poiHt ) of some function

30

HEul=(2m) [ 119, - a(luTax @y, (6)

II. EQUILIBRIUM SOLUTIONS

+1(¢2)hy— N, =0. (4)
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FIG. 2. Root-mean-square radipg and maximum amplitude
$,(0) of the equilibrium ground-state solutions of Ed) as a
function of \.

u(r,t), in general different from any equilibrium solution
uy(r,t), must lie above the equilibrium locus in thé-N
diagram.
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FIG. 3. Normalized included power contours in the radius vs
time plane for an initial state rather far from equilibrium. In this
examples =0.9 and\ =0.53.

where the deviation parameteris such that 8¢ <1. This
definition allows us to control the deviations from the equi-
lirium solutions by means of the parameterand also en-
sures thatN=N, for all times (since N is an integral of
motion). Returning to Fig. 1 again, the representative point
of u(r,0) in theH-N diagram is then displaced horizontally
to the right with respect to the representative point of
&, (r) on the equilibrium locus. Therefore, one begins fur-
ther away fromany equilibrium solution ag increases. We
have checked that the following results would remain essen-

Equation(4) can be solved numerically using a shootingt?a”y unchanged if a less simple choice for the ini_tial condi-
method. This consists of a search for the appropriate coefftion would have been madgor example, a Gaussian func-

cient C, as defined by the asymptotic behavigre., for

r=rq, whererg is so large that the nonlinear term is negli-

gible) of the solutions of Eq(4) for a givenh,

géh(r)wcxexp(—)\l’zr)/()\1’2r)1’2 for r=ry,
€)

which, after a numerical integration of E@L) fromr=r to
r=0, yields

de\(r)/dr|;_o=0. 9

For a given\, because of the nonlinearity for<rg, only
discrete values o€, can fulfill the boundary conditior9)
and the smallesC, defines the ground-state solutidat
least, from our experience, in the cases we have cons

tion with the same powelN and the same maximum
amplitudeor the same mean radius dg(r)].

For rather large deviation of the initial state from equilib-
rium, i.e.,e~1, the beam generally undergoes complicated
oscillations[22] and a significant fraction dfl escapes from
the central bearfi.e., radiation [21]. A nice example, where
£=0.9 and\ =0.53, is illustrated in Fig. 3, which shows the
level contours of the normalized included powét,

r
v(r,t)sz‘lf lu(r,t)|?r dr,
0

which is such that & v(r,t)<1. It is seen that in the time
interval 0<t<250, the beam oscillates in a rather violent
and complicated way and that about 70% of the initial power

Mered\lk is radiated away, leaving only about 30% unradiated. For

Figure 2 shows some features of the ground-state solutions fr” 220 the self-focused beam reaches a gently oscillating

the 2D case for the nonlinearity8) as a function of\,
namely, the maximum amplitudg, (0) and the root-mean-
square(rms) radiusp, . It is seen that ax —0, ¢,(0) van-
ishes buip, goes to infinity, while a3 — 1, both¢, (0) and
Py 0o to infinity, a result familiar from previous approxi-
mated calculation$1,25,27. As a result, the poweN re-
mains finite forh —0, i.e., N=N., while N—o for A—1.

IIl. OSCILLATIONS NEAR EQUILIBRIUM

state that is not far from the equilibrium solution character-
ized by A=0.31 (a value smaller than the initial opelt
should be noticed that, in general, the rate of radiation emis-
sion is much smaller than in the example of Fig. 3 for
t<250 and, due to the natural limitations of the numerical
calculations, it is hard to observe an asymptotic state so close
to equilibrium as the one seen in Fig. 3 tor 250. However,
since in these cases radiation seems to be continually emitted
as a function of time, it is plausible that an asymptoigarly
equilibrium state, similar to the one of Fig. 3 for 250, is

We will be interested in the behavior of the radial solu-always reachedas long asN>N, andH<0).

tionsu(r,t) of Eq. (2) when the initial conditioru(r,0) dif-
fers somewhat from some equilibrium solutigq(r) of Eq.
(4) as

u(r,.0)=(1-ge)¢(1-#&)r), (10

There is a close relationship between the radiation emis-
sion and the beam’s evolution towards equilibrium, as dis-
cussed in Ref[23], which treatment we will recapitulate for
convenience with some further elaboration. Consider
n(r,t) and h(r,t), which are defined in a way similar to
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N andH [Egs.(5) and(6)] respectively, but with the differ-
ence that the integration is not performed over the whole N A
transverse plane but over a finite transverse surfacef

radius r instead. WhileN and H are time independent, /\ N\
A

type A

1
0
2
™
i
oo
ow

10* I

n(r,t) and h(r,t) in general are not because of transfers
through the boundary db. Assume that we choose large
enough so that practicaliyn(r,t)=N and h(r,t)=H at
t=0, H andN corresponding to a particular initial condition
u(r,0). Because of the radiation emission fr@nand be- &
cause the nonlinearity is negligible outsi8ethe contribu-

0.6
0.0
AL e ey i oot o AL
gcr); Sp?sﬁi\lniﬂdo:gzlgzie[ I.i(rel.'tli\lmel.q('thasa?r?eHrepr)]r(eréte)g.tative - \/ \/ \/ \/ \/ \/ \} v \/ \/ V \/ \/

point (n(r,t),h(r,t)) in the H-N diagram starts at the point
(H,N) and evolves inside thécurved triangle formed by o )\
the equilibrium locus and the two perpendicular lines

N=N and H=H (see Fig. 1 As the representative point A A A A/\ N
approaches the equilibrium loclisecessarily near an equi- o

librium state characterized by smaller from the one ap- \\/ \/ \/ \/V \\/\/
pearing in Eq.(10)] the oscillation amplitude is then ex-

-2 0

2

type B

€
0

10° 1

-1

0.9 type C
0.001

0
1
I I

10° 1

-1

pected to decrease, to become more regular, with radiation 0

emitted at a decreasing rate, as illustrated in Fig(4h time

interesting consequence is that the upper bound on the

amount of radiation emitted is given BYy— Ng, whereNg is FIG. 4. Examples of the three observed main types of oscilla-

the value of\ corresponding to the intersection of the equi-tions (typesA, B, andC) near equilibrium.

librium locus and the vertical lineH=H.) Therefore, the

radiation emission can be seen as the means used by thaion, but now with two or more well-defined frequencies

nonlinear system to reach a state closer to equilirium. that generally do not seem to be in simple ratios, as can be
Let us now consider initial states very close to equilib-seen in Fig. 6, which shows the power spectrum for three

rium, i.e.,e<<1, which, as discussed above, corresponds talifferent values ol for A>0.84. As\ increases, new small-

investigating the beam'’s behavior for large times to the  frequency spikes appear at critical valugsnear frequencies

beamlet’'s behavior in the filamentation process for largew=X\, and then move towards smallerwhile increasing in

times[21]). A systematic investigation of the time behavior amplitude as\ is further increased.

of the solutions of Eq(2), as a function of\, reveals that These observations hold only for small perturbation am-

there are three main types of behavior or oscillations, whiclplitudes €<1). As ¢ increases gradually, secondary sharp

we will denoteA, B, andC and which occur in rather well- spikes corresponding to multiples of the primary frequencies

defined ranges of. These appear after a transient that lastgi.e., those that are seen when<1) appear in the power

for only a few oscillation periods and can be characterized by

the oscillations of the field amplitudei(0t)|. (In fact, the

choice of any radiug, other thanr=0, located in a region ° A =07 (a)
where the nonlinearity is non-negligible, i.e., foxr,, & = 0.001
wherer,~2p,, would lead to the same conclusions; the % ©

choicer =0 is only a matter of conveniengé-igure 4 shows - ° Q

the quantity 1)(t)= dlg(t)/dt, where Iy(t)=|u(0t)/ ° Jk

¢, (0)|? for the three types of oscillationgThe time deriva- o

tive of I,(t) was taken in order to remove the constant part - A= g‘; (b)
of the intensity and thus simplify the analy3i3ypeA be- = o FeT

havior occurs for 82\ <0.47 (approximately and is charac- g

terized by a damped oscillation having a rather well-defined @ =20 30

single (rea)) frequency since the zeros bf(t) are regularly
spaced and thus correspond to a well-defined period after the
short transient. Typ&- behavior is the simplest one: It hap-
pens approximately for 0.47\<0.84 and is characterized
by an undamped, or at most very weakly damped, oscillation
having a well-defined_single frequency, as can be seen in
Fig. 5a) which shows||0(w)| wherel ((w) is the discrete
Fourier transform of j(t). Finally, typeC behavior is seen

for N values greater than for tyg@-behavior(i.e., approxi- FIG. 5. Fourier spectrum dfy(t) (see the text for the definition
mately for 0.84<\<1) and corresponds, like tyd@behav- for initial beams near the equilibrium solutian=0.7, for the initial
ior, to an undampedor at most very weakly dampgdscil-  displacements =0.001(a), 0.3 (b), and 0.6(c).

0 0.5 1.0 1.5 2.0
frequency w
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frequency FIG. 7. Frequencies as a function)of Small circles correspond

to observed frequenciéfor A >0.84 several frequencies coexist for
. N the same value of). The set of smallest observed frequencies is
FIG. 6. Fourier spectrum dfy(t) (see the text for the definition labeled O Dash()ed curves correspond to the ?requencies
for initial beams near the equilibrium solutions characterized b - 1 ; .
A=0.85 (a), 0.93 (b), and 0.96(c), for the initial displacement \(;)z;?iati%?]alEgaflngrz]itioln 4. The curve labele@y is obtained from a
£=0.001. The values of correspond approximately to the appear- '
ance of a new frequency spike on the right of the spectrum. where the functionay(r)=d,(r)+ad,(r)/or is easily
. . shown to be orthogonal t¢, (r) and to have a single node at
spectrum. For typ@f and 8 beha\(|or, the secondary spikes some distance. Owing toxthe fact, mentioned above, that
cqr_respond to mult|p_les of the primary frequency. For SOMGhe observed frequencies are independent(as long as
critical VaIL.je Ofe " which depends 0“’. the power spectrum r<rp), EQ. (12) generalizes as follows, when several well-
becomes filled with a background noise. This is illustrated 'ndefir?ea fréquencies are present for a éiWefas for typeC
Fig. 5 for A=0.7 (corresponding to a typB-behavioj for oscillations: y
variouse. As can be seen in this figure, fer=0.001 a single '
spike is present in the power spectrum at the frequency
w=0~0.48[Fig. 5@)]. Whene =0.3, secondary spikes can lu(r,t)|= ey (r)+ > on(f)ya(t)  for |ya(t)|<1,
be seen at the frequencyXand ) [Fig. 5(b)] (other spikes n=1
at 40 , 5Q, ... are also present, but are much weaker (13
\é\c/)?talrr:ﬁu:n?gf tr:]:wmgtlpuifdl:::zn Sggrbgtdk"?t'r? %lrjésr:;i’c?:st ?r\{vhere the sum is over all frequencies. When damping of the
the power spectruniFig. 5c)] Fpopr typeC bgehavigr ase oscillations occursi.e., for typeA oscillations for any value
: ’ ' . ; f ¢ and for all types whe is not very small the y,(t) in
Increases gradu_ally, secondary sp|kes.correspond|ng tom q.(13) are thenyglowly decreasing fu>r/1cti0n?5 of t?;rq(e.)Notice
gglisrotf thee Ab:rs]g: geggﬁgs;grs ?)%?e?r: ;‘ dg:ﬁ Opr)]ovle:ksep;ef:gtu that the radiation component, associated with the damping of
ypP ’ o » SP the oscillations, is not included in E@13), which is then
cated at the beat frequency combinatigng+ w;|, where

i(i#)=1.2 also appea@mong others more diffi- expected to hold only in the region where the nonlinearity is
cult to identify). As for typesA andB, the power spectrum non-;egllgl.tlJlle,l "e']; for<ry. | f : f
becomes filled with a background noise wheris further The oscillation requency values as a unctionagtfor
increased e<1, are shown in Fig. 7. Small circles correspond to the

For the simplest typeB, numerical investigations reveal frequencies obtained from the direct numerical solutions of
P yPeL, 9 Eqg. (2). Note that forA>0.84 there is more than one fre-
that the beam amplitude evolves nearly as the

N-conservina. self-similar form guency for a given value of (type-C behavioj. The lowest
9 oscillation frequencyw, which is unique foix <0.84, forms
a smooth curve fok >0.84, which becomes the smallest of
lu(r, )= (1+ ¢(£)) S ([(1+ ¥(D]r), (11

the multiple frequencies. We will refer to this frequency as
Q(N). It can be seen that fox<0.47 (typeA behavioy,
wherey(t) is a periodic function. To first order ip(t), EQ.  (~\, and that forx~0.6, Q) has a maximum and goes to
(1D is 0 as\ approaches 1.
The quasi-self-similar behavior of the small radial oscil-
[u(r,t)| =g\ (r)+o(r)y(t) for [y(t)|]<1, (120 lations (at least for typeB) reported abovdsee Eq.(11)]
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naturally suggested using this property to do approximatescillations between energy levdl30], while the radiation
calculations[25,27,28. Anderson and BonneddR7] per-  emission, which is responsible from the damping of the os-
formed a variational calculation for the nonlinearity of inter- cillations observed, for instance, in typeoscillations, ap-
est herd Eq. (3)], starting from the simple trial function pears to be an effect analogous to photoionizaf&i.

) Let us first rewrite Eq(2) in a form familiar in quantum
u(r,t)~A(t)exg —r2/2R(t)2+ib(t)r]. (14  mechanics

Of course, A(t) and R(t) are not independent since du

A(t)?R(t)2=2N, andN [see Eq.(5)] is time independent. I—-—(Ho+ 8V)u=0, (19
The approximate equilibrium solution can be written as

whereH,= —Vf+V0 is the unperturbed Hamiltonian, with

_ L _ Vo(r)=—f(luy(r,t)[?), (20
where the equilibrium radiuR, is related to the equilibrium
amplitudeA, as[27] as the unperturbed potential, which will be assumed to be

) ) ) 21 known [after solving Eq.(4) for the equilibrium solution
Ry=Ay(—dilog(1+A}) = In(1+AD)+A) ™75 (16)  y,(r,1)], and a perturbing potential

oy (r)=Aexp( —r2/2R?), (15)

in which dilog(x) =/}In(t)(t—1)"'dt is the usual diloga- SV(r,t)=—f(u(r,t)|?)—Vo(r). (21
rithm function[29]. For small oscillations near equilibrium,

the oscillation frequency iE27] For the given unperturbed potentid},, stationary solutions

of Eq. (19), i.e., when V=0, are of the formu(r,t)
2 _ cUg(r,t)=&c(r)exp(—iEt), whereég(r) are the normalized

Qy=2+/ _R}\AA( —2dilog(1+A) —3In(1+A) eigenfunctions satisfying thénear Schralinger equation
A2 |12 (Ho—E)ée=0. (22
+ (17
1+A{ HereE is equivalent to energy in quantum mechanics. Com-

paring Egs.(22) and (4), one can see that the ground-state
energy level of the eigenvalue equatiori22) is
E=Ey,=—\ and that the corresponding eigenfunction is
£e, (=N "g,(r), so that ug(r,t)=N; 2, (r.t). Of
course, EQ.(22) may have other discrete statésxcited
and thus plof),(A,) against\(A,) as in Fig. 7. It is worth ~ state$ corresponding to the energi€s <E,<Es<---<0
noticing that for the same trial function, E(l.4), we found and has certainly a continuum of states., unbound stat¢s
that the virial method12] also yields Eqs(15—(17), al-  for E=0. SinceH is an Hermitian operator, the eigenfunc-
though an assumption about the phase in the trial function ions &g of Eq. (22) can be defined so that they form a com-

From Eq. (4) one can express. in terms of A, and
R\ (A,), using Eq.(15),

A=RZ+AAn(1+A%) -1, (18)

not required for this method. plete basis obrthonormalfunctions on which, in particular,
From Fig. 7 it is clear thaf,(\) constitutes an excellent the solutions of Eq(19) can be expanded. _
approximation ofQ(\) for A>0.65 (for which Q, is less For the perturbing potentiaiV(r,t), we have to first or-

than\), while the agreement is poorer for lowkrvalues. ~ der infu|—¢,,

The poor agreement foxr<<0.65 is not really surprising in >

view of the fact that the trial functiofiL4) is not able to take SN~— (Jul— %)df(q ) _ (23)
into account the oscillation damping or the radiation compo- dqg
nent that characterizes type-behavior. This is a warning

thatQ is unlikely to exist with a real part only, as originally From the observations about small oscillations near equilib-
assumed. While the “overtone frequencies,”i.e., those aboveium reported in Sec. Ill, one obtains an approximate general
Q, appearing foh >0.84, can, in principle, also be obtained form for sV(r,t): substituting Eq(13) in Eq. (23) yields

from the appropriate trial functions by means of the virial or
the variational method, we will not perform these calcula-
tions here since, as we will see in the next section, these
frequencies can be interpreted in a very simple way from a
guantum-mechanical point of view. for r<ry,, (24

q:¢)\

SV(r,H)~>, sV, (r)exp — 7,t)cod ot + a,)

IV. ANALYSIS where the sum is performed over all frequencies
w, present for a given. HereéV,(r) are time-independent
functions, «,, are constant phases, ang are small positive

In this section we will show that the oscillations near constants that we introduce to approximate the damping of
equilibrium examined in the preceding section share manyhe oscillations due to radiation loss. The conditiear, has
features with some well-known quantum-mechanical effectsbeen added in Eq24) because the latter may not hold out-
In particular the multiple frequencies observed in typ@s-  side this range, where radiation may take place. In fact, only
cillations fore<1 will be shown to correspond to Rabi-like the ranger <r, will be useful in the following discussion.

A. General discussion
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1. Rabi oscillations since nothing is said about the characteristic time of conver-

We now consider typ& oscillations, i.e., multiple un- gence to equilibrium. Given the perturbation of the form Eq.
damped frequencies. Viewing EG19) ’from’ a quantum- (24), one can repeat the standard derivation of the transition
mechanical point of view leads one naturally to suspect tharoPability ratedwg found in textbooks, with the important
there is some relationship between the frequencies observélfference that here the perturbation is “switched on” in the
in typeC oscillations and the transition frequencies far future (instead oft=0), since the equilibrium state ap-
wnm=E,—E,,, where theE; are the eigenvalues of E(2) pears fort—o, and one then has to calculate the transition

nm n m» i . . .. ¥ e
These expectations prove to be fulfilled, as can be seen iprobability fo_r_flnlte values_ _of. One finds the familiar “one-
Fig. 7, where the frequencies,, for n=1—4 are shown as Pnoton transition” probability rate
dashed lines[The first four excited energy level§;—E,

were calculated numerically by solving E@?2) for various dwe~ lE |<UE|5vn|uA>|2 77”/772 5 dE.
unperturbed potentials characterized by the parameter 2N\ "R (E+N—wn)"+ 7;
A= —Eg]. While the overtone frequencies observed in type- (25

C oscillations are seen to be closedg,, w3y, andw,g, the
agreement betwee® (or ) andw;qis not nearly so good.
In this connection, it is worth noticing that, in linear two- . . .
level systems in which the perturbation is stationary, the acvanishes outside t.h's range becausexqf When 7n 9Oes 1o
tual transition frequency approaches the difference betweeff'®: the nth ratio in t_he sun_wmaﬂon 1S replaced _by
the two energy levels, sa, and E,,, when this value is O(E+X—wy), whe_reé(x) IS the_D'FaC deita fun<_:t|on. As in
large with respect to the matrix elemerftée,|oV|égm)= guantum mechanics, Eq25) indicates that irreversible

&5 5V £endx dy[30]. This feature appears in Fig. 7, since losses to the>cont|nuum states%£0), i.e., _radlatlon, occur
the agreement between the observed frequencies«gpd oplywhelnw_n/tr)]\_ for at Itﬂzterl]st?n&),]t.(assumgn%fclhtey? sr;;]alb
seems to improve as increases. This analogy with a linear ?II’]CE only in this Cgse € transition probability to the con-
stationary two-level system leads us to the following two INuum 1S appreciable.

provisional conclusions. The first is that the excited state%t Neost’ ;ﬁgeg)mgnteohgg 7< )\OPOE'; ;I? rr1] ?eefcéh?t z‘;ig'ﬁ;
(n=1) are relatively strongly coupled with the staie=0 yp n PP y

and only weakly between themselves since the related freuTnlmportant isolated points in the case of typeescilla-

quenciesw, ., wheren>m=1, are not seen in the power tions) and therefore, according to E@25), no radiation

spectrum. The second conclusion is that the dominant terrﬁhOUId be produced, in agreement with the observations

: . : made in Sec. lll. Forn<0.47 (typeA oscillationg, the
in the perturbing potentiabbV, Eq. (24), has a frequency . o :
significantly smaller tham,, for n=2 since it seems to act unique oscillation frequency observed is such thatA,

as a nearly constarfor zero-frequency perturbation. It is which indicates, according to E(R5), that transitions to the

thus plausible that the term in the perturbing potendsl cont||nugm states close 'E:O. hdohoccgjr. Onpe agan th'z .
corresponding to the frequen€y is indeed responsible from gonc :J”S"O“h's '”tﬁ‘gfee'.””e.”t W'tf tdgg se_rv?rt]|ons repc:‘rie In
the excitation of the Rabi-like oscillations between the en'Ae(():s'cill,a\t/;/or?srewa: i?w;zlrsrzlg?rgmr?h;aégrr]n;ngeo??k?s gsc?;r:f
ergy levels of the perturbed system. tions. A link is thus established between the value of the
oscillation frequency and the emissi¢or nop of radiation.

The perhaps intriguing fact that the transitions to the con-

Let us now investigate the possible transitions to the continuum states, for typér oscillations, are apparently so close
tinuum that the perturbing potential EQ4) may cause. The to E=0 will be clarified at the end of this section by consid-
basic idea is in the association of the radiation emissionering, as a particular case analogous to the present discus-
inferred in Sec. Ill, for instance, for typ&-oscillations, with  sion, the 1D CNLSE, for which analytical solutions are
the well-known photoionization effect in quantum mechan-known, which presents the same features as the Ayps-
ics, in which the probability to find a bound electron in its cillations described in Sec. lIl.
initial stationary state irreversibly decreases in time when the We now consider the cases where the initial states are not
frequency of an external perturbatigior instance, an elec- so close to equilibrium. Whea increases gradually, we no-
tromagnetic fieldl is such thatw=—2xE,/h, whereE, is  ticed that secondary frequencies and eventually background
the binding energy of the electron ahds the Planck con- noise appear in the power spectriifig. 5]. While, for ex-
stant, a condition that ensures that the induced state of theemple, for typeB oscillations, the frequenc§ is too small
electron is in the continuum. One deals with such a problento ensure a transition to states in the continuum, the second-
by means of the standard time-dependent perturbation theogty frequencies 2, 3Q, . . ., or thefrequencies forming the
in which one calculates a transition probability background noise, as is further increased, are greater than
dPe=N, *(ug|u)]?dE from the initial well-defined initial X, i.e., large enough to allow such transitions. According to
stateu, to the state of the continuumz (E=0) between Eq. (25), one expects, therefore, radiation to be produced,
the energyE andE+dE [31]. and consequently oscillations to be damped, uatide-

In our case, we have thafr,t)—u,(r,t) ast—x, ie., creases sufficiently as the beam gets close to equilibrium,
the beam tends to equilibrium asymptoticalgscaping ra- i.e., so that the secondary frequencies come to play a negli-
diation can be neglected as-», as a first approximation  gible role. Thus, for typd3 and -C oscillations the damping
This statement is not really in contradiction with the obser-of the oscillations should eventually stop, while the damping
vations about typ® and C oscillations made in Sec. Ill continues for typeA oscillations since in this case the radia-

Notice that theﬁvn, and thereforeSV, need only be known
for r<ry (r,=2p,) since the integrand of theth integral

2. Radiation emission
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tion emission is not due to the secondary frequencies but thnearity f(s)=s does not saturatdlt is interesting to note
the primary one(). This description of the evolution of the that Anderson’s variational modg28] for the 1D CNSLE,
self-focused beam starting not so close from equilibriumyyhich does not take into account the radiative field, yields
made on the basis of E@5), is in agreement with the nu- the oscillation frequencyw=\=/3, which is somewhat
merical solutions, where a damping of the oscillations is a"greater than the correct frequency in the same way as the

ways observed initially whea is not very smallsee Fig. 3, \giational estimate), [Eq. (17)] was greater than the ob-
for instancg. Of course, in principle, the secondary frequen-geryed frequency for typeA oscillations)
cies exist even whem is arbitrarily small, although their The unperturbed potential —f(|uy|2)=—|uy/|?

corresponding amplitude in the power spectrum is very_ _ oy sech(\Ax) is such that its depth increases\asut
small. Consequently, typB-and C behavior should lead i \yigth decreases as 2 For 1D square well potentials,
asymptotically,but over a much longer time scaléo an  yhe hroduct depth width? determines the number of bound
equilibrium state as for typéroscillations. Besides this, the  g5ta437]. The fact that this quantity is nearly constant here
analog of "multiphoton transitions,” which correspond to explains why the typ& behavior(multiple oscillation fre-
h|ghe_r.—order terms in EQ('ZS)' may also CO””'P“te _to the quencie$ is not observed for the 1D CNLSE: The unper-
transitions to the continuum. In sum, the main differencey, e potentials have no excited states. As shown in Fig. 2,
between typeA oscillations, on the one hand, and ty@S  ho gepth and width of the 2D unpertured potential corre-

and C, on the other hand, is that for typ® the primary g onding to the saturable nonlinearity) both increase as
frequency() ensures the transitions to the continuum, while, " reases which allows excited states. Numerical investi-

for typesB and C they are enabled only by the secondary yations show that this is not due to the number of transverse

frequencies, whose influence decreases rapidlys a8e-  gimensions but rather to the form of the nonlinearity. As a
creases, and probably by multiphoton-transition-like pro-matter of fact, in one dimension the saturable nonlinearity

cesses, both of which are effects of higher order. (3) presents the same three types of behavior as in two di-
mensions. Only small quantitative differences distinguish the
B. One-dimensional cubic nonlinearity two cases: For instance, in the 1D case, tpp&ehavior
Let us now compare the above general analysis with andl@Ppens for 8- <0.47, typeC for 0.89<A <1, and type
lytical solutions for the 1D CNLSE case, which includes theB in between. o o
complete behavior. The equilibrium ground-state solutions of According to Eq.(25), radiation should be emitted in the

Eq. (4) are case considered here since the unique oscillation frequency is
such thatw=A\, which implies transitions to the continuum
Uy (X,t) = V22X secti VAx)exp(itt). (26)  states of energies arourie=0 after the transient. One can

see that the radiation field given by E&7) is fully consis-
Settingu=u, + éu and using the fact thai, (x,t) satisfies tent with this finding. As a matter of fact, solutions of Eq.
Eqg. (22), particular solutions of Eq(19) linearized about (28) can be written as
these equilibrium solutions have been obtained by Gordon

. . + oo
[33] and are, in our notation, g(x,t)zf Sk exi (kx—k2t/2)]dk. 29

&g a9
= — + —_—
uxt)=-277 4\Nanf(Ax) X 2xgtantf(VAx) Herek is related taE, appearing in Eq(22), ask?=E. Now,

assume that the initial stat®(x,0) is real and even.The
assumption thati(x,0) is even is similar to the radial sym-
metry assumption in two dimensioh<onsequently, from
Eq. (27), g(x,0) is also real and even and thgék) is real.

+2Ng* sechR(VAX)exp(2i\t), (27)

whereg(x,t) is any solution of the free Schdinger equation

g9 %g Outside the equilibrium solution, ER7) is
IE‘FW:O. (28 azg X g
5U~—2W+4\/XM0—X—2)\Q, for |x|>rb.

One can see that for large timéa(x,t) is not localized (30)
within the range of the equilibrium solution&6) (i.e.,

x| <xp=~2\""?) becaus@(x,t) is spread outdiffracted as  substituting Eq(29) in Eq. (30) and using the fact that the
time increases. This ensures tha¢x,t)— u,(x,t) (for  |eading contributions of the integrand occur when its phase is
x| <xp) ast—, as required. Also, it is easy to see that, t0stationary, i.e., whek~x/t, one concludes that the Fourier
first order ing (or its derivativey i.e., for small oscillations, modes aroundk=0, or E=0, are indeed the dominant

lu(x,t)| oscillates with the frequencyo=\ about modes ing(x,t), and therefore idu(x,t), whent is large, as
[uy(x,t)], with an amplitude variation proportional  (or  asserted above.

its derivativeg, which necessarily decreases in time since
g(x,t) does within the range of the equilibrium solution.
Therefore, the small oscillations of the 1D CNLSE present
the same features as the typadamped oscillations observed ~ We have investigated the behavior of radially symmetric
in Sec. ll[i.e., in the 2D case with the saturable nonlinearity solutions of the 2D NLSE for the generic saturable nonlin-
(3)] with the difference that here it occurs for all possible earity (3), near the equilibrium solutions, (r,t), which are
values of\, which now ranges from O te since the non- characterized by a single parameteranging between 0 and

V. SUMMARY AND CONCLUSIONS
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1 in our case. When the initial beam is rather far from anywith our observations of the numerical solutions. The exactly
equilibrium solution and when the integral of motion are solvable 1D CNSLEfor which only typeA oscillations are
such thatN=N. and H<O0, the beam initially approaches observed has been found to be in agreement with this gen-
some equilibrium solution in a manner characterized by ir-eral analysis. The main difference between linear quantum
regular oscillations accompanied by a significant amount ofnechanics and the nonlinear system considered here is that
radiation emission. As the beam gets closer to equilibriumhere the perturbation is not imposed from outside: The sys-
its behavior simplifies considerably and this asymptotictem generates it by its own means.
phase of its evolution constituted the main subject of our For powers large with respect to criticdlli{N. >1), the
investigations. Contrarily to the well-known 1D CNLSE, beam is likely to break up into several beamlets if the initial
where only damped single-frequency oscillatiditygpe A) beam is not perfectly symmetric radially and rather far from
are observed, one can see, in addition, in the case we studigtie equilibrium locus in theéd-N diagram(see Fig. 1. We
single (type-B) and multiple(type-C) frequencies of practi- have shown elsewhere that when filamentation occurs, the
cally undamped oscillations. We also observed that when theeamlets approach asymptotically equilibrium solutions,
oscillations are not so close to equilibrium, secondary freranging typically fromN/N.=1 to 20[21]. For the nonlin-
guencies appear in the Fourier spectrum, which are multiplesarity considered in that work, this range includes only type-
of the primary ones and also simple combinations of themA and B oscillations, since typ& oscillations only occur
For oscillations rather far from equilibrium the secondaryfor N/N. >75 or A\>0.87 [while for the nonlinearity(3)
frequencies combine and proliferate to form a noisy spectype-C oscillations occur foN/N. >172]. Therefore, type-
trum. C oscillations would seem to be unlikely to be observed in
We considered our problem from a quantum-mechanicapractical situations. If two independent degrees of oscillation
formulation. Very general features of the perturbationfreeedom were allowed, rather than the single radial one im-
(mostly the characteristic frequenciesere taken from the posed in the present study, one would likely observe a richer
numerical solutions. We found that the observed multipleand more complex variety of behavior near equilibrium than
frequencies of the oscillationftype C) corresponded ap- that reported in the present paper, such as transverse quad-
proximately to the transition frequencies from ground to ex-rupole oscillations, for instance. It is plausible, however, as
cited statesw,y of the unperturbed potential, the agreementasserted in Ref24], that the anisotropic modes would damp
improving asw,g increases, in a way that is familiar in out and that the purely radial oscillations would come to
simple two-level systems in quantum mechanics. Our analydominate. In that case the results of the present study would
sis has also revealed a link between the oscillation frequeriold asymptotically in this more general context. This inter-
cies and the emission of radiation: when at least one freesting topic is beyond the scope of the present work and will
guency w, characterizing the perturbation is such thatconstitute the subject of a future investigation.
w,=\N (—\ being equal to the energy of the fundamental
bound statethe latter is then able to induce a transition from
the fundamental statéquilibrium, bound solutionto the i
continuum(unbound states of positive energy, i.e., radigtion  This work was supported by the Miniséede I'Education
in a way similar to the well-known photoionization effect. du Quéec and by the Natural Sciences and Engineering Re-
Such a frequency can be found for typeescillations, but search Council of Canada under Strategic Grant No.
not for typeB and C oscillations, a fact that is consistent STR 0149641.
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